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Two-dimensional system of charges in cylindrical traps

Hiroo Totsuji

Department of Electrical and Electronic Engineering, Okayama University, Tsushimanaka 3-1-1, Okayama 700, Japan
(Received 12 August 1992)

Some phenomena induced by placing an electrode at the center of a cylindrical apparatus confin-
ing ions or electrons, such as magnetic and electrodynamic traps, are analyzed on the basis of an
electrostatic model. It is shown that a purely two-dimensional system of charges can be formed on

a cylindrical surface under appropriate conditions.

PACS numbers: 52.25.Wz, 32.80.Pj, 61.50.—f

There have been observed various structures of the
nonneutral systems of charged particles at low tempera-
tures in magnetic and electrodynamic traps [1,2]. The
structure changes with the system parameters such as
the number of charges. The purpose of this paper is to
analyze some phenomena related to the introduction of
an electrode at the center of these traps, especially the
formation of two-dimensional plasmas, its electrostatic
potential being regarded as a new parameter. The re-
sults may apply to both magnetic traps (Penning and
electron traps) and electrodynamic traps (Paul traps).

We assume that the trap has the cylindrical symmetry
at least in the central part of the system. Our proposal
is to apply a voltage ¢ (relative to outer conductors) to
an electrode placed at the symmetry axis as a source of
an electrostatic potential

Uext({Ri}) = _Q¢0 Zh’l (%) . (1)

Here q is the charge, R; is the radius of the particle i at
r; in the cylindrical coordinates r; = (R;, 6;, z;), and the
zero of the potential is taken at the outer conductor of
radius L.

In the magnetic traps, the Hamiltonian of our sys-
tem is written as H = Hp + Uext({R;}) where Hy =
(m/2) 3, v? + Uing({ri}), Uinte({r:;}) being the mutual
Coulomb interaction. The statistical distribution in our
system is described by the Hamiltonian in the rotating
system [3]

HO + Uext({Ri}) -

= Eyin + Uint({ri}) + Uex"({Ri})
mw
_T(Q——w)zi:Rf, @

where Q@ = ¢B/mc is the cyclotron frequency; w, the
angular velocity of solid rotation; Ey;y, the kinetic energy
in the corotating frame; and M, the parallel component
of the total canonical angular momentum. Note that w is
negative (positive) when ¢ > 0 (¢ < 0). We have a system
of charged particles confined by the effective background
charges of the uniform density mw( — w)/2mg?. We
denote the effective confining force constant —mw(2 —w)
(> 0) by k.

In the electrodynamic traps, the force constant k is
related to the oscillating electric field [4]. The Hamilto-
nian, however, takes the same form as (2) and we may
apply our results on the structure equally well to these
traps.

The structure of trapped charges in our system at suf-
ficiently low temperatures may be analyzed by extending
the model developed by Barrat and the author [5,6] to in-
clude Ueys. In the case of ¢g = 0, this model has been suc-
cessful in reproducing the structures in cylindrical traps.
The essential ingredient of the model is to properly ac-
count for the effects of discreteness (correlation) in both
radial and azimuthal directions. The former is taken into
account by assuming the shell structure, and the latter,
by considering the correlation energy of the charges on
the cylindrical surface.

We may thus write the potential energy per particle in
the form

3 () - S (30 (3) - L S (F) + Lot (F) - Lm0

i>7

Here N is the number of shells, R; and n; are the radius and number of charges (per unit length) of the shell ¢, and
n = Y, n;. The last term in square brackets is the correlation energy within the shell approximately expressed by

that of planar lattice with ¢ = —0.78213 [7].

Noting that the effect of ¢ is equivalent to the existence of charges at the center, we define the effective charge

density neg per unit length by

Neff = N+ ¢o/2q.
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The potential energy per particle in our model is thus rewritten as

2 N .
T SR (fi = fim)RE = 95— i) I Rf — (7 = fL0) R+ o(fi = fi-0) B R H) + ¢n (1 N ¢0> L

i=1

Here k' = k/q¢’ndz, ¢4 = do/qnest, R, = nessR;, and
fi = 20j(<syMi/mest- By replacing fi by f; = fi + ¢5/2,
we can formally eliminate the term proportional to ¢;
and rewrite the essential part of (5) into the same form as
in the case of ¢y = 0; the only difference is that f§ = ¢(/2
instead of fo = 0. The number of shells and the position
and population of each shell are calculated by minimizing
(5) with respect to N, {R.}, and {n;/n.s}.

Our system is characterized by two parameters, k' and
¢5- Considering an imaginary process of gradually col-
lecting charges on inner shells to the center, starting from
the state of ¢g = 0, we expect that the comparison of sys-
tems for finite values of ¢ with those for ¢g = 0 at the
same value of &’ may be useful.

In Fig. 1 we observe that the positions of shells are
approximately given by those in the case of ¢j = 0 [6]
especially for outer shells. Given the number of shells, the
diagram of radius for ¢f # 0 may be formed by taking
the necessary number of branches for ¢ = 0 beginning
with the outermost shell. In Fig. 2 we see that the
deviations in the population are somewhat larger than
those in positions.

The number of shells decreases with the increase of
the external potential ¢3. The boundaries of these tran-
sitions are shown in Fig. 3 by broken lines as functions
of parameters k' and ¢3/2. Note that ¢/2 is the ratio
of charges on the electrode to total effective charge.

In Fig. 3, we have also plotted the values of fas_n =
> j(<M—nN)Mj/m in the case of M shells for ¢y = 0 [6]
as functions of k’: fys_n is the fraction of charges on
inner M — N shells. Observed at radius R, the effect
of uniformly charged shells with radii smaller than R is
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FIG. 1. Positions of shells. Solid lines are values ¢y = 0

[5,6]. Triangles are those with ¢5/2 = 0.25. Squares [8] and
crosses [6] are results of numerical experiments for ¢5 = 0.
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(5)

equivalent to the charges of the same amount placed at
the center. Therefore we may gather the charges of in-
ner M — N shells to the center with little change in the
structure of outer NNV shells. As a result, we may have a
system which is characterized by the parameters k' and
¢0/2 = fr—n. We thus expect that, on the line fas_n,
we have N shells in our system with an electrode. In
the domain between the lines fas_n and fap—n—1, how-
ever, we have two possibilities; either to maintain still
N + 1 shells with reduced population on the innermost
shell or to change to the state of IV shells, charges on the
vanishing shell moving to the next.

For finite values of ¢y, we observe that the boundary
between N + 1 shells and N shells lies about halfway
between the lines fys—n and fyr—n-1. When about half
of the charges on the innermost shell are absorbed to the
central electrode, the shell disappears and the rest of the
charges there join the next (and now innermost) shell.

Here we note that when the potential is sufficiently
large we have a state of one shell. In the case of a very
strong potential, the charges may sit at the minimum of
the sum of the confining force and the potential of the
electrode. We thus have a single layer or a purely two-
dimensional system of charges on a cylindrical surface.
This is in contrast to the charges in the shells realized
in the cylindrical or spherical confinements. In the lat-
ter case, the singleness of the layer is not guaranteed in
principle.

When we increase the areal number density of charges
on the minimum surface, the charges will cease to be sin-
gle layered at some critical value. They increase average
mutual distance and lower mutual Coulomb energy with
the expense of the confining and external potentials.

In the case of cylindrical confinement without an elec-
trode, the charges are lined up at the center when the
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FIG. 2. Populations of shells. Symbols are the same as in
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FIG. 3. Number of shells (V) changes at broken lines.

Values of fm-~ (M =1,2,...,6) for ¢ = 0 are plotted and

compared with the domain where the number of shells is equal

to N. A limit of stability of the two-dimensional system is
shown by the dotted line.

effective force constant is sufficiently large [8, 5, 9, 10].
With the increase of the number of charges (per unit
length), they form successively a twofold helix (zigzag),
a threefold helix, and so on. The breakdown of a single
layer in our system corresponds to the transition from
the line to the twofold helix.

When the radius is large, the instability of the ‘trans-
verse’ (or normal to the layer) phonon may give a limit
of areal density for single layer. For large radii, the dis-
persion relation of the phonon is given by

m d?u

2
um=2k+2 Z %[COS(K'Pi)—l]’ (6)

P;#0 " °

where P; and K are the two-dimensional lattice and the
wave vectors, respectively. In the triangular lattice, the
second term gives the minimum —13.35¢%/a® (a being the
lattice constant) for the wave vector Ko at the corner of
the first Brillouin zone as shown in Fig. 4. The displace-

FIG. 4. Wave vector of the most unstable mode in the
Brillouin zone and corresponding deformation; triangles and
crosses are equally displaced from and to the plane, respec-
tively.

ment u corresponds to the separation of the triangular
lattice into three larger triangular lattices.

In our parameters, the criterion for stability to this
deformation is written as

K'(140.5¢5)%/(1 — 0.5¢5)8 > 2.127 x 1074, (7

This condition is plotted in Fig. 3 by a dotted line and we
see that it is always satisfied by the state of one shell. We
thus have a possibility to realize two-dimensional systems
of charges by applying a potential to the central electrode
in cylindrical traps.

It should be noted, however, that (7) gives a limit of
stability: There may exist another mechanism which de-
stroys the single layer. We also note that in the case
of purely one-dimensional confinement where confining
force is proportional to kz2/2, the coefficient 2 before
k in (6), coming from the balance between kR?/2 and
—q¢o In(R/L), is to be replaced by 1.

The systems of charges discussed here are expected to
be classical except for very unusual values of the param-
eters. They provide us with a possibility to directly ob-
serve the formation of classical two-dimensional lattices
of charges.
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